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0. Introduction. This is a reworking of our previous note [DZH], in which we
deployed “Drazin permanence” and quasipolar Banach algebra elements in the proof
of a variant of the “spectral permanence” enjoyed by C* algebra embeddings. Here
we use instead “simple permanence” and simply polar elements of semigroups and
rings: we believe that the argument is now more transparent and more elementary.

1. Generalized permanence. If T : A → B is a “semigroup homomorphism”
[DZH] then there is inclusion

1.1 T (A−1) ⊆ B−1 ⊆ B,

where A−1 is the invertible group of A and hence also

1.2 A−1 ⊆ T−1B−1 ⊆ A;

equality here is what is known as the “Gelfand property” or spectral permanence
for the homomorphism T :

1.3 T−1B−1 ⊆ A−1 .

1This research is supported by the Ministry of Science and Technological Development of
Serbia, grant no. 174007.
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More generally the “relatively regular” elements

1.4 A∩ = {a ∈ A : a ∈ aAa}

satisfy

1.5 A−1 = A−1
left ∩A−1

right ⊆ A−1
left ∪A−1

right ⊆ A∩

and if T : A → B is a semigroup homomorphism then

1.6 T (A∩) ⊆ B∩ ⊆ B

and hence

1.7 A∩ ⊆ T−1B∩ ⊆ A.

Equality in this case will be described as generalized permanence for T :

1.8 T−1B∩ ⊆ A∩.

We recall [DZH] that spectral permanence does not by itself imply generalized
permanence:

Theorem 1. For ring homomorphisms T : A → B there is the implication that

1.9 spectral and generalized permanence together imply one-one.

Proof. Generally T : A → B has spectral permanence only if

1.10 T−1(0) ⊆ Rad(A)

has generalized permanence only if

1.11 T−1(0) ⊆ A∩

and evidently

1.12 Rad(A)∩A
∩ = O ≡ {0}

where

1.13 Rad(A) = {a ∈ A : 1−Aa ⊆ A−1}. 2

For a specific example consider the composition operator

1.14 T = Rφ : A = CX → B = CY

induced by φ : Y → X where

1.15 Rφ(a) = a ◦ φ (a ∈ A).

Notice
A∩ = A; A−1 = {a ∈ A : a−1(0) = ∅};

of course
R−1

φ (0) = {0} ⇐⇒ φ(Y ) = X.
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2. Simple polarity. If a ∈ A has a commuting generalized inverse we shall call
it “group invertible” or simply polar:

2.1 SP(A) = {a ∈ A : a ∈ a comm(a)a}.

If T : A → B is a homomorphism then

2.2 TSP(A) ⊆ SP(B) ⊆ B

equivalently

2.3 SP(A) ⊆ T−1SP(B) ⊆ A.

When there is equality here we say that T has simple permanence. If we think of
the counterimage T−1B−1 as in some sense “Fredholm” elements of the semigroup
A then the counterimage T−1SP(B) abstracts what Caradus [C] and Schmoeger
[S] have called generalized Fredholm operators.

Evidently a ∈ A is simply polar if and only if it is the commuting product of an
invertible and an idempotent; also necessary and sufficient for a ∈ A to be simply
polar is ([X], [HLu]) that

2.4 a ∈ Aa2∩a
2A :

recall

a2u = a = va2 =⇒ aua = a = ava

and take c = vau for a “group inverse”. Also necessary and sufficient for a ∈ SP(A)
in a ring A is ([S]; [KDH] Theorem 5) that there be a “semigroup inverse” c ∈ A
for which

2.5 a = aca; 1− ac− ca ∈ A−1.

Notice also

2.6 SP(A) ⊆ A∪ = {a ∈ A : a ∈ aA−1a} :

observe that a+ (1− ac) and cac+ (1− ac) are mutually inverse. It follows

2.7 SP(A)∩A
−1
left = A−1 = SP(A)∩A

−1
right :

the simply polars are [DHS] “left-right consistent”.

Theorem 2. If B−1
left ̸= B−1

right there is T : A → B which is one one and has
spectral but not generalized permanence.

Proof. If T : A → B and also A is commutative then using (2.7) there is
implication

2.8 T (a) ∈ B−1
left \B

−1 ⊆ B∩ \ SP(B) =⇒ a ̸∈ A∩ = SP(A)
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violating generalized permanence. In particular if

2.9 T = J : A = comm2
B(a) ⊆ B

then T is one one and has spectral permanence while if B−1
left ̸= B−1

right then we

may take a ∈ B−1
left \B−1. 2

For a specific example ([DZH] Theorem 3.2) take a = u ∈ B = L(X) or
B = B(X) with X = CN or X = ℓ2 to be the (forward) unilateral shift:

u(ξ)n+1 = ξn; u(ξ)1 = 0 :

evidently vu = 1 ̸= uv where
v(ξ)n = ξn+1.

Alternatively replace the natural embedding J by the left regular representation
L. For another example look at the embedding for a compact Hausdorff space X

2.10 C(X) ⊆ CX

or alternatively for a Banach space X

2.11 B(X) ⊆ L(X);

here of course spectral permanence follows from the open mapping theorem.

Theorem 3. When T : A → B is arbitrary then

2.12 T one one with simple permanence =⇒ T has spectral permanence

while

2.13 T has spectral and simple permanence =⇒ T one one.

Proof. The last implication is the argument of Theorem 1; conversely observe

2.14 SP(A)∩T
−1B−1

left ⊆ A∪
∩T

−1B−1
left ⊆ A−1 + T−1(0). 2

Notice that (2.10) also shows that spectral permanence and one one do not
together guarantee simple permanence.

3. Simply polar operators. When a ∈ A = L(X) is in the ring of additive
maps on an abelian group X then necessary and sufficient that a ∈ SP(A) is that
it is both “of ascent 1” in the sense that

3.1 a−2(0) ⊆ a−1(0)

equivalently

3.2 a−1(0)∩a(X) = O
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and also “of descent 1” in the sense that

3.3 a(X) ⊆ a2(X)

equivalently

3.4 a−1(0) + a(X) = X.

The same conditions characterise simple polarity in the ring of linear mappings
on a vector space and also in the ring A = B(X) of bounded linear mappings
on a Banach space: here however two or three applications of the open mapping
theorem are necessary. For incomplete normed spaces however the conditions (3.1)
and (3.3)are not in general sufficient; for example if a ∈ A = B(X) is one one and
onto but not invertible then it will not even be in A∩. For a specific example take

X = c00 ⊆ c0 ⊆ CN

to be the “terminating sequences” and a = w ∈ A the standard weight

x(ξ)n = (1/n)ξn.

Together with the assumption a ∈ A∩ the conditions (3.1) and (3.3) may still
not be sufficient:

Theorem 4. If a ∈ A is arbitrary in the ring A then with

3.5 b =
a −1
0 0

∈ B = A2×2 d =
0 −1
−1 0

∈ B

then automatically
b = bdb ∈ B∩

while there is implication

b ∈ Bb2 =⇒ a ∈ A−1
left

and also implication
b ∈ b2B =⇒ a ∈ A−1

right.

Hence
b ∈ SP(B) =⇒ a ∈ A−1.

When in particular A = L(X) is the linear operators on a vector space X then if
a ∈ A is one one or onto then b ∈ B has ascent or descent one:

a−1(0) = O =⇒ b−2(0) = b−1(0) =
1
a
X

and

a(X) = X =⇒ b(X2) = b2(X2) =
X
O
.
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Proof. Look at the top right hand corner element. 2

For example ([H] (7.3.6.8)) we may take again A = B(X) ⊆ L(X) with X =
c00 ⊆ c0 the space of terminating sequences and a = w ∈ A the “standard weight”.
Evidently a = w has a two-sided unbounded inverse in the larger ring L(X) and
therefore can have no inverse among the bounded operators B(X).

When A = B(X) for a normed space X and a ∈ A is of ascent and descent one
then [X] each of the following conditions is sufficient for simple polarity:

X complete;

a ∈ A Fredholm;

a ∈ A finite rank;

b ∈ X a normed algebra and a ∈ {LbRb} ⊆ B(X).

4. Koliha-Drazin permanence. More generally if there is n ∈ N for which
an is simply polar we shall also say that a ∈ A is “polar” or Drazin invertible. If
a ∈ A is polar then there is c ∈ A for which ac = ca and a− aca is nilpotent. More
generally still if we write in a Banach algebra A

4.1 QN(A) = {a ∈ A : 1−Ca ⊆ A−1}

for the quasinilpotents of A then a ∈ QN(A) if and only if σA(a) ⊆ {0} while with
some complex analysis we can prove that if a ∈ QN(A) then

4.2 ∥an∥1/n → 0 (n → ∞).

Since (4.1) and (4.2) are equivalent it follows that also equivalent ([H2], [K], [HC])
is the condition

4.3 QN(A) = {a ∈ A : 1− comm(a)a ⊆ A−1}.

In the ultimate generalization of “group invertibility” we shall write QP(A) for the
quasipolar elements a ∈ A those which have a spectral projection q ∈ A for which

4.4 q = q2; aq = qa; a+ q ∈ A−1; aq ∈ QN(A).

Now [K] the spectral projection and the Koliha-Drazin inverse

4.5 a• = q a× = (a+ q)−1(1− q)

are uniquely determined and lie in the double commutant of a ∈ A. It is easy to
see that if (4.4) is satisfied then

4.6 0 ̸∈ acc σA(a) :
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the origin cannot be an accumulation point of the spectrum; conversely if (4.6)
holds then we can display the spectral projection as a sort of “vector-valued winding
number”

4.7 a• =
1

2πi

∮
0

(z − a)−1dz

where we integrate counter clockwise round a small circle γ centre the origin whose
connected hull ηγ is a disc whose intersection with the spectrum is at most the
point {0}. By the same technique we can display the Koliha-Drazin inverse in the
form

4.8 a× =
1

2πi

∮
σ′(a)

z−1(z − a)−1dz

where σ′(a) = σ(a) \ {0}. Now generally for a homomorphism T : A → B there is
inclusion

4.9 T QP(A) ⊆ QP(B)

while if T : A → B has spectral permanence in the sense (1.3) then it is clear from
(4.6) that there is also “Drazin permanence” in the sense that

4.10 QP(A) = T−1QP(B) ⊆ A :

Theorem 5. For Banach algebra homomorphisms T : A → B there is implication

4.11 spectral permanence =⇒ Drazin permanence.

Proof. Equality in (1.3) expressed [DZH] in terms of the spectrum together with
(4.6). 2

Obviously if a ∈ SP(A) is simply polar with “commuting generalized inverse
c ∈ A then it is quasipolar and

4.12 cac = a× :

its “group inverse” is the same as its “Koliha-Drazin inverse”.
As a sort of converse to Theorem 5 and squaring the circle in Theorem 3:

Theorem 6. If T : A → B is a Banach algebra homomorphism then

4.13 QP(A)∩T
−1(B−1) ⊆ A−1 + T−1(0)

and if T : A → B is one one then

4.14 QP(A)∩T
−1SP(B) = SP(A).

Hence if T−1(0) = {0} is one one then

4.15 Drazin =⇒ simple =⇒ spectral permanence.

In particular if a ∈ B and T = J : A = comm2(a) ⊆ B then

4.16 A∩ = T−1SP(B) = T−1QP(B).
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Proof. Uniqueness guarantees that the spectral projection T (a)• of Ta ∈ SP(B) ⊆
QP(B) commutes with T (a) ∈ B and one-one-ness guarantees the same for a ∈ A.

2

We recall ([DZH] Theorem 3.2) that following (2.8) with B = B(ℓ2) the shift
a = u ∈ B∩ \QP(B).

5. Moore-Penrose permanence. By a star semigroup we shall understand a
semigroup A with an involution ∗ : A → A satisfying for arbitrary ac ∈ A

5.1 (a∗)∗ = a; (ca)∗ = a∗c∗; 1∗ = 1.

In rings and algebras involutions are assumed to be additive and “conjugate linear”.
Obviously there is implication

5.2 a ∈ H(A) =⇒ a∗ ∈ H(A)

for each H(A) ∈ {A−1A∩SP(A)}. Elements a ∈ A are said to be hermitian or
“real” when they are the same as their adjoints:

5.3 Re(A) = {a ∈ A : a∗ = a}.

AMoore-Penrose inverse for a ∈ A is c = a† ∈ A for which the induced idempotents
are hermitian:

5.4 a = aca; c = cac; (ca)∗ = ca; (ac)∗ = ac.

We write A† ⊆ A∩ for those a ∈ A for which a† exists. The argument ([HM]
Theorem 5) for “C* algebras” works in semigroups [X2] and says that

5.5 a† ∈ comm2(aa∗)

is unique and double commutes with {aa∗} in A. The “B* condition” in a Banach
algebra A says that

5.6 ∥a∗a∥ = ∥a∥2.

It follows
ax ∈ A =⇒ ∥ax∥2 ≤ ∥x∗∥ ∥a∗ax∥

and hence that * is cancellable in the sense that

5.7 a ∈ A =⇒ L−1
a∗a(0) ⊆ L−1

a (0);

in words ([HLa] Definition 1) the pair (La∗La) is “left skew exact”. We need one
more object: the “star polars”

5.8 SP∗(A) = {a ∈ A : a∗a ∈ A∩}.
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Our main objective is to verify again the Harte/Mbekhta observation ([HM]
Theorem 6) that in a C* algebra A

5.9 A∩ ⊆ A†

relatively regular elements always have Moore-Penrose inverse and that [HM2]
isometric C* algebra homomorphisms have generalized permanence. We begin
by collecting some elementary observations:

Theorem 7. If the involution ∗ : A → A is cancellable then there is inclusion

5.10 A† ⊆ SP∗(A) ⊆ A∩

Proof. With cancellation there is implication

a ∈ SP∗(A) =⇒ a ∈ aAa∗a ⊆ Aa∗a∩aAa

and equality
Re(A)∩SP

∗(A) = Re(A)∩SP(A).

If a = aca ∈ A† with a† = c then

a∗a = a∗(ac)(ac)∗a = a∗acc∗a∗a ∈ a∗aAa∗a;

conversely (5.7)
a∗a = a∗ada∗a =⇒ a = ada∗a;

hence also
a ∈ Aa∗a ⇐⇒ a∗ ∈ a∗aA.

Hence if a∗ = a then (2.4) follows. 2

Now it is clear that isometric C* homomorphisms have “Moore-Penrose
permanence”:

Theorem 8. If T : A → B is a * homomorphism with simple permanence there is
inclusion

5.11 T−1B† ⊆ A†.

Proof. We claim (cf [K2] Theorem 2.5)

A† = {a ∈ A : a∗a ∈ SP(A)}

with implication
a∗a ∈ SP(A) =⇒ a† = (a∗a)×a∗.

If a ∈ A† with a = aca and (ca)∗ = ca and (ac)∗ = ac then with d = cc∗ we have

a∗ad = a∗acc∗ = a∗c∗a∗c∗ = ca
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and
da∗a = cc∗a∗a = ca.

Conversely if a∗a = a∗ada∗a with a∗ad = da∗a and (wlog: d 7→ 1
2 (d+ d∗)) d = d∗

then using cancellation with c = da∗

aca = ada∗a = a and ca = da∗a = a∗ad = a∗c∗.

Now if a ∈ A there is implication

Ta ∈ B† =⇒ T (a∗a) ∈ SP(B) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A† . 2

Thanks to (5.9) this is of course “generalized permanence”. The Harte/Mbekhta
result is derived by using the “poor man’s path” to convert the idempotents ca and
ac into self adjoint idempotents. Alternatively thanks to the Gelfand/Naimark/
Segal representation we can look first in the very special algebra D = B(X) of
bounded Hilbert space operators:

Theorem 9. If d ∈ D = B(X) for a Hilbert space X then

5.12 (d∗d)−1(0) ⊆ d−1(0)

and

5.13 cl d(X) + d∗−1(0) = X;

hence

5.14 cl d(X) = d(X) =⇒ d∗(X) = d∗d(X) =⇒ cl d∗d(X) = d∗d(X).

There is inclusion

5.15 Re(D)∩D
∩ ⊆ SP(D);

hence

5.16 d ∈ D∩ =⇒ d ∈ SP∗(D) =⇒ d∗d ∈ SP(D) =⇒ d ∈ D†.

Proof. For arbitrary ξ ∈ X there is [DZH] inequality

∥dξ∥2 ≤ ∥ξ∥ ∥d∗dξ∥

and also
cl d(X) = d∗−1(0)⊥ . 2

Both of the Harte/Mbekhta observations now follow:

Theorem 10. If T : A → B is isometric then

5.17 T−1(B∩) ⊆ A†.
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Proof. With S : B → D = B(X) a GNS mapping we argue using again Theorem
3 together with “spectral permanence at” a∗a (which has of course real spectrum)

Ta ∈ B∩ =⇒ ST (a∗a) ∈ SP(D) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A† . 2

In Theorem 4.2 of [DZH] we established this using the more esoteric QP(A)
rather than SP(A). It would be entertaining to be able to replace the GNS repre-
sentation in Theorem 10 with the much more elementary left regular representation
L : A → B(A). Specifically (5.7) enables us to replace d ∈ D by La ∈ B(A) in
(5.12) while if c = a† is a Moore-Penrose inverse for a ∈ A then if a′ ∈ A

c = a† =⇒ a∗(1− ac) = 0 =⇒ a′ = a(ca′) + (1− ac)a′ ∈ La(A) + L−1
a∗ (0)

giving an alternative to (5.13).

6. Polar decomposition. We conclude with a discussion of the “polar decom-
position” of C* algebra elements. In the algebra of operators A = B(X) it is
familiar that an arbitrary element a ∈ A can be written as the product of a “partial
isometry” and a positive operator. It is not clear that this can be done in a general
C* algebra: for example if A = C[01] there are only two idempotents in A and
hence only two possible partial isometries. We want here to observe that [H3] at
least the Moore-Penrose invertibles have polar decomposition. By a generalized
polar decomposition for an element a ∈ A of a C* algebra we shall understand a
pair (uc) ∈ A2 for which a = uc with

6.1 u = uu∗u;

6.2 c = c∗;

6.3 L−1
u (0) ⊆ L−1

c (0).

If in addition

6.4 0 ≤ c and L−1
c (0) ⊆ L−1

u (0)

then we shall say that (uc) a polar decomposition of a ∈ A. We claim ([H3] Theorem
4)

Theorem 11. If (uc) ∈ A2 is a generalized polar decomposition of a ∈ A then

6.5 a∗a = c2 and u∗a = c.

If (uc) is a polar decomposition of a then each of u and c are uniquely determined
and lie in the double commutant of (aa∗). Also

6.6 aa∗u = ua∗a.
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Proof. For the first part of (6.5) observe that

u∗uc− c ∈ L−1
u (0) ⊆ L−1

c (0);

now

(u∗a− c)∗(u∗a− c) = c(u∗u− 1)2c = 0

and the second part of (6.5) follows by cancellation. When (uc) is a polar decom-
position then the positivity gives the uniqueness of c:

6.7 c = |a| = (a∗a)1/2.

The uniqueness of u∗u and uu∗ follows from their status as “support” and “co-
support” projections for a; for the uniqueness of u suppose a = uc = vc satisfying
(6.1)-(6.4): then

(1− v∗u)c = 0 =⇒ c(1− u∗v) = 0 =⇒ u(1− u∗v) = 0.

Now

u∗u = u∗uuv =⇒ u∗(u− v) = 0

similarly v∗(u− v) = 0 and hence v = u by cancellation.
It is clear from (6.7) that c is in the double commutant of (aa∗) as are also

the support and cosupport u∗u and uu∗. Finally if d ∈ comm(aa∗) then it also
commutes with each of c u∗u and uu∗ and hence

cu∗d = dcu∗ = cdu∗ =⇒ uu∗d = udu∗ =⇒ duu∗ = uu∗d = udu∗

and hence

du = duu∗uudu∗u = uu∗ud = ud.

Finally for (6.6)

aa∗u = uc2u∗u = ua∗au∗u = ua∗a . 2

We shall write

6.8 (uc) = (sgn(a)|a|).

Evidently taking limits of polynomials in a∗a

6.9 |a∗|u = u|a|;

it follows

6.10 (sgn(a∗)|a∗|) = (sgn(a)∗sgn(a)|a|sgn(a)∗).

We can characterise ([H3] Theorem 5) relative regularity in terms of the polar
decomposition:
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Theorem 12. If a ∈ A† ⊆ A has a Moore-Penrose inverse then it has a polar
decomposition with

6.11 sgn(a) = (a†)∗|a|.

If a ∈ A has polar decomposition (u|a|) then

6.12 d = |a|+ 1− u∗u =⇒ L−1
d (0) = {0}

and

6.13 a ∈ A† =⇒ d ∈ A−1 =⇒ a ∈ A∩.

Proof. We argue with c = a† and u = c∗|a| that

uu∗u = c∗|a|2cc∗a = c∗a∗acc∗|a| = (ac)∗(ac)c∗|a| = c∗a∗c∗|a| = c∗|a|

and
u|a| = c∗|a|2 = c∗a∗a = (ac)a = a.

If x ∈ A is arbitrary there is implication

dx = 0 =⇒ ucx = 0 =⇒ cx = 0 = u∗ucx = 0 =⇒ u∗ux = 0 = (1− u∗u)x = 0.

Also
d ∈ A−1 =⇒ ad−1u∗a = udd−1a∗a = ua∗a = a.

Conversely if a ∈ A† then a†a = u∗u and aa† = uu∗ and hence

d′ = (a†a+ 1− u∗u) =⇒ dd′ = 1 = d′d . 2
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[DHS] D.S. Djordjević, R.E. Harte and C.M. Stack, On left-right consistency in
rings, Math. Proc. Royal Irish Acad. 106A (2006), 11–17.
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